

1

Physical verification of Neural Network Models

Pesaresi Seminar - 2023

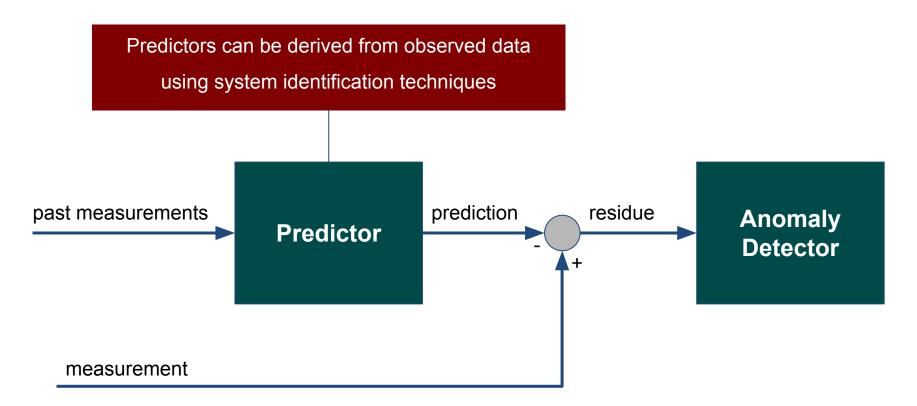
Josafat Ribeiro Leal Filho

Supervisors: Antônio Augusto Fröhlich UFSC Stefano Chessa UNIPI

Introduction Dynamic System Identification

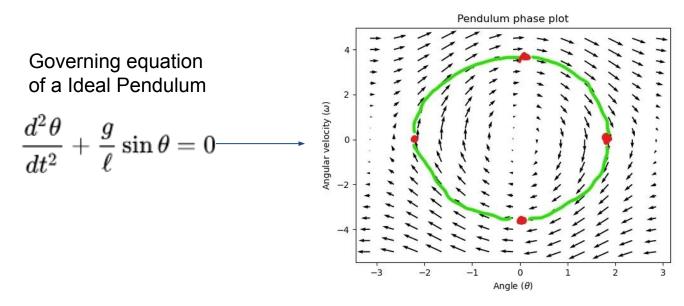
- In recent years, Artificial Neural Networks (ANN) have gained significant attention as model candidates in system identification.
- However, the effectiveness of ANNs in this domain depends on factors like training data quality and interpretability.

Introduction Example : Predictor Based Monitoring and Anomaly Detection



Introduction Governing equations

The governing equations in dynamical systems can possess physical and mathematical structures in the form of symmetries, symplecticity ("respects" the structure of the state-space) and energy conservation.



lisha.ufsc.br

Introduction Model-Based x Data Driven, Hybrid Approaches

Model-Based

- Model structure is derived from governing equations and parameters are determined based on observed data
- Parameters are usually interpretable

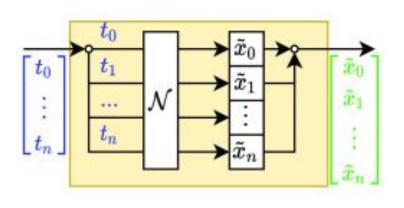
Data-Driven

- Model structure is selected based on data analysis and heuristics
- Parameters are usually not tied to any interpretable quantity
- Hybrid approaches combine first principles based governing equations models with neural networks (Integration of domain knowledge).

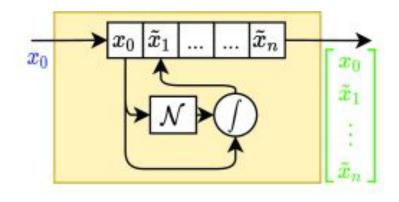
"All models are wrong, but some are useful". George E. P. Box

Introduction Model-Based x Data Driven, Hybrid Approaches

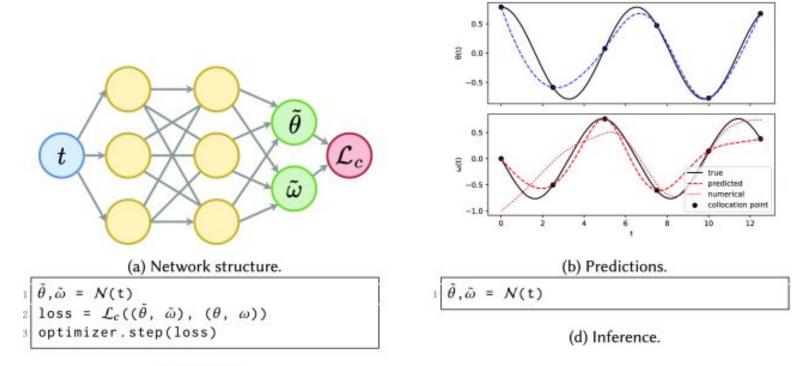
Direct-solution model



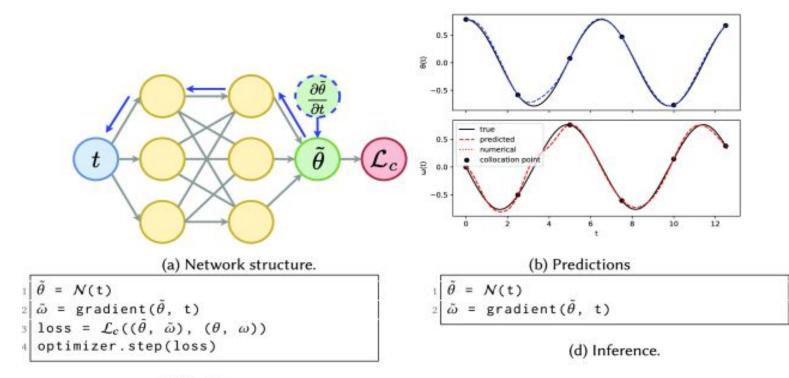
Time-stepper model



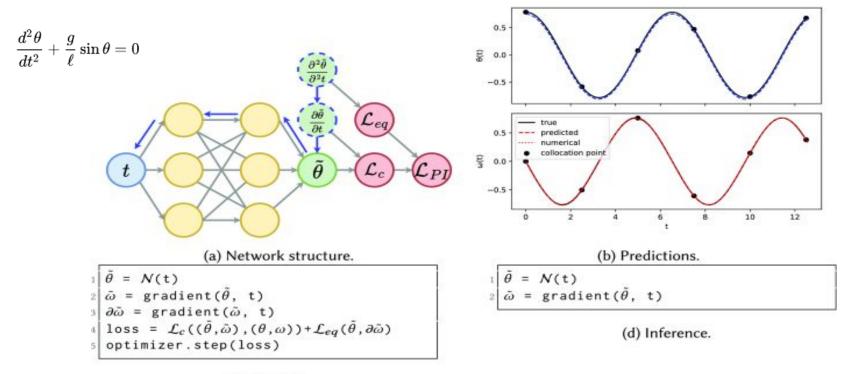
Introduction : Direct-Solution Models Vanilla direct-solution



Introduction : Direct-Solution Models Automatic differentiation solution

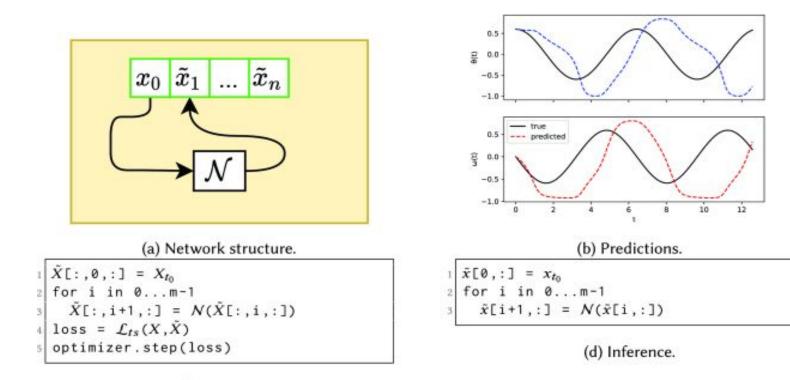


Introduction : Direct-Solution Models Physics-informed neural network

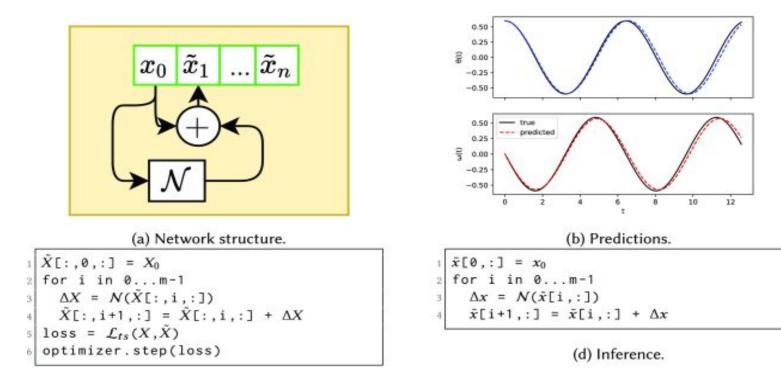


lisha.ufsc.br

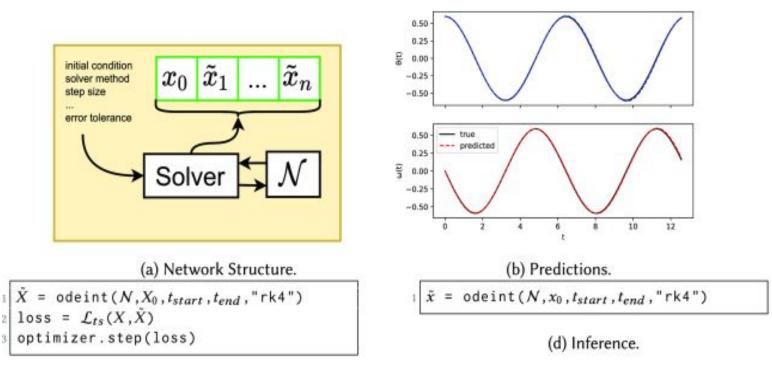
Introduction : Time-stepper models Direct time-stepper



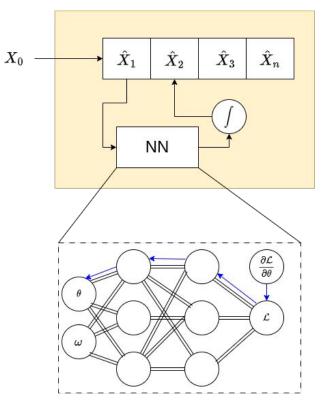
Introduction : Time-stepper models Residual time-stepper



Introduction : Time-stepper models Neural Ordinary differential equations (NODEs)

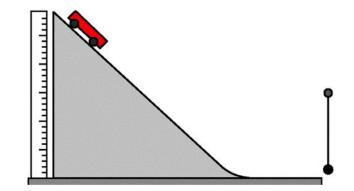


Introduction : Time-stepper models Hamiltonian and Lagrangian Networks



$$L = T - V$$

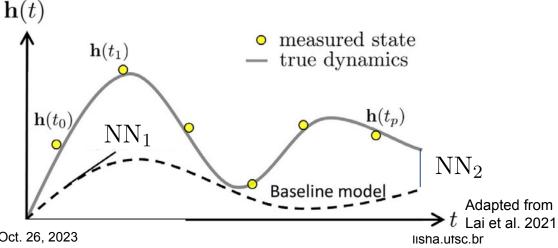
where T and V are the kinetic and potential energy of the system, respectively.



Real data application

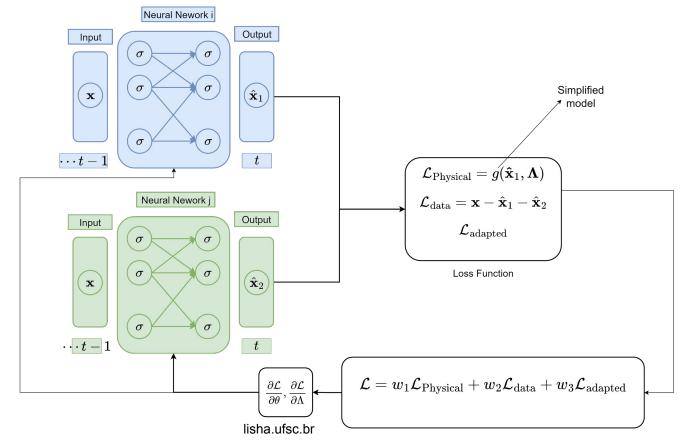
Hybrids approach

- h(t) comprises the dynamic system representation.
- The evolution equation: $\dot{\mathbf{h}}(t) = A\mathbf{h}(t) + \mathbf{w}(t)$
- Neural networks approximate the system evolution.
- Discrete-time state evolution: $\mathbf{h}(t_{k+1}) = \mathbf{h}(t_k) + NN_1(\mathbf{h}(t_k)) + NN_2(\mathbf{h}(t_k))$



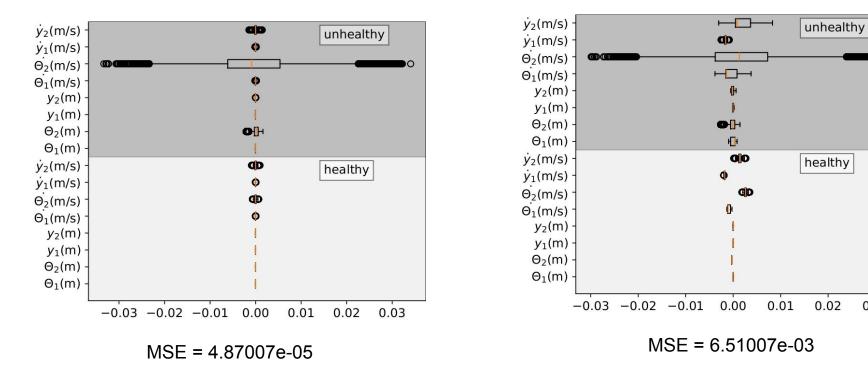
Prior knowledge about the dynamic system

Hybrids approach Real data application



Hybrids approach Real data application

Physics-informed Neural Network



Vanilla Neural Network

Oct. 26, 2023

lisha.ufsc.br

0.03

Verification of Machine Learning models How hybrid approaches are validated?

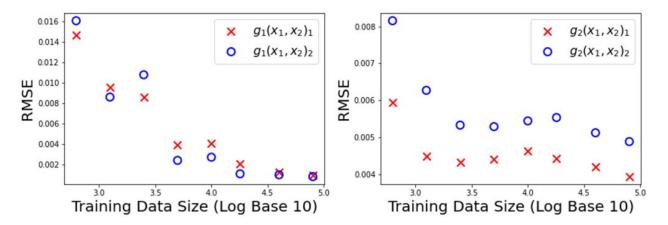
Analytical recovered expression

		True discrepancy model	Recovered discrepancy model
scheme 2	\ddot{x}_1	$-6x_1 + 3x_2 - 0.15\dot{x}_1 - 2x_1^3$	$-6.002x_1 + 2.998x_2 - 0.149\dot{x}_1 - 1.994x_2$
	^x ₂	$3x_1 - 6x_2 + 3x_3 - 0.15\dot{x}_2$	$3.008x_1 - 6.000x_2 + 2.999x_3 - 0.151\dot{x}_2$
	x ₃	$3x_2 - 6x_3 + 3x_4 - 0.15\dot{x}_3$	$3.006x_2 - 5.975x_3 + 2.969x_4 - 0.151\dot{x}_3$
	X4	$3x_3 - 3x_4 - 0.15\dot{x}_4$	$2.993x_3 - 2.982x_4 - 0.149\dot{x}_4$
scheme 3	x ₁	$-2x_1^3$	$-1.996x_1^3$
	^x ₂	0	0
	X 3	0	0
	×4	0	0

LAI, Zhilu et al. Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration, v. 508, p. 116196, 2021.

Verification of Machine Learning models How hybrid approaches are validated?

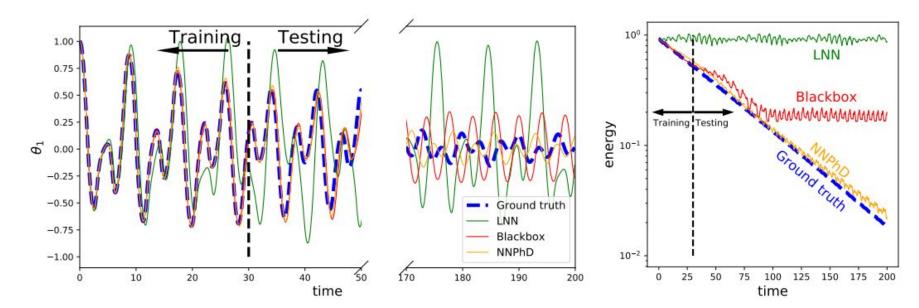
Evolution of error



O'LEARY, Jared; PAULSON, Joel A.; MESBAH, Ali. Stochastic physics-informed neural ordinary differential equations. Journal of Computational Physics, v. 468, p. 111466, 2022.

Verification of Machine Learning models How hybrid approaches are validated?

Energy



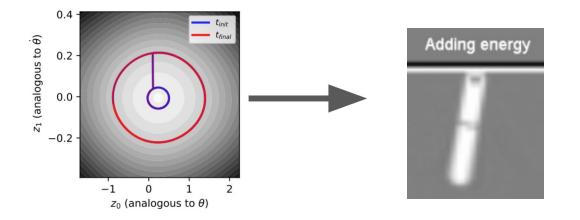
LIU, Ziming et al. Machine-learning nonconservative dynamics for new-physics detection. **Physical Review E**, v. 104, n. 5, p. 055302, 2021.

Verification of Machine Learning models Open Questions

- What are the **key physical properties** that are crucial for evaluating the representation of a physical system by a neural network?
- How can error analysis help in identifying discrepancies between predicted and observed physical properties, thus indicating where the neural network might encounter challenges in accurately capturing system dynamics?
- In what way can partial knowledge of a system serve as a useful guide for evaluating the efficacy of neural network solutions?

Aplications

- Examining the subtle impact of system modifications during monitoring.
- Identifying sources of error influence, including noise, model representativeness, solution uncertainty, and parameter dimensionality.
- Techniques for detecting and addressing abnormal behaviors in online learning environments.



Physical verification of Neural Network Models

josafat@lisha.ufsc.br